Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available May 21, 2026
- 
            ABSTRACT Reaction mechanism studies typically involve the characterization of products, and intermediates are often characterized by (sub)millisecond techniques, such as nuclear magnetic resonance, while femto/attosecond spectroscopies are used to elucidate the evolution of transition states and electron dynamics. However, due to the lack of detection techniques in the microsecond to nanosecond range, as well as the emergent complexity with increasing scale, most of the proposed intermediates have not yet been detected, which significantly hinders reaction optimization. Here, we present such a nanosecond-scale real-time single-molecule electrical monitoring technique. Using this technique, a series of hidden intermediates in an example Morita-Baylis-Hillman reaction were directly observed, allowing the visualization of the reaction pathways, clarification of the two proposed proton transfer pathways, and quantitative description of their contributions to the turnover. Moreover, the emergent complexity of the catalysis, including the catalysis oscillation effect and the proton quantum tunneling effect, is further unveiled. Finally, this useful yet low-yield reaction was successfully catalyzed by the application of an electric field, leading to a high turnover frequency (∼5000 s−1 at a 1 V bias voltage). This new paradigm of mechanistic study and reaction optimization shows potential application in scalable synthesis by integrated single-molecule electronic devices on chip.more » « less
- 
            Pyroxenes (AMX2O6) consisting of infinite one-dimensional edge-sharing MO6chains and bridging XO4tetrahedra are fertile ground for finding quantum materials. Thus, here, we have studied calcium cobalt germanate (CaCoGe2O6) and calcium cobalt silicate (CaCoSi2O6) crystals in depth. Heat capacity data show that the spins in both compounds are dominantly Ising-like, even after being manipulated by high magnetic fields. On cooling below the Néel temperatures, a sharp field–induced transition in magnetization is observed for CaCoGe2O6, while multiple magnetization plateaus beneath the full saturation moment are spotted for CaCoSi2O6. Our analysis shows that these contrasting behaviors potentially arise from the different electron configurations of germanium and silicon, in which the 3d orbitals are filled in the former but empty in the latter, enabling electron hopping. Thus, silicate tetrahedra can aid the interchain superexchange pathway between cobalt(II) ion centers, while germanate ones tend to block it during magnetization.more » « less
- 
            Increases in evapotranspiration (ET) from global warming are decreasing streamflow in headwater basins worldwide. However, these streamflow losses do not occur uniformly due to complex topography. To better understand the heterogeneity of streamflow loss, we use the Budyko shape parameter (ω) as a diagnostic tool. We fit ω to 37-year of hydrologic simulation output in the Upper Colorado River Basin (UCRB), an important headwater basin in the US. We split the UCRB into two categories: peak watersheds with high elevation and steep slopes, and valley watersheds with lower elevation and gradual slopes. Our results demonstrate a relationship between streamflow loss and ω. The valley watersheds with greater streamflow loss have ω higher than 3.1, while the peak watersheds with less streamflow loss have an average ω of 1.3. This work highlights the use of ω as an indicator of streamflow loss and could be generalized to other headwater basin systems.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available